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Numerical solutions of the unsteady Fanno
model for compressible pipe flow
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This paper presents numerical results on the evolution of the solutions of the Fanno
model for compressible pipe flow. The principal results concern the large-time beha-
viour when nonlinear effects are appreciable throughout the evolution. Our computa-
tions show that compression waves can be expected to evolve into travelling waves
for large times whereas expansion waves cannot.

1. Introduction
As described in Ockendon, Ockendon & Falle (2001), the dimensionless Fanno

model for turbulent gas flow in a rough pipe of constant cross-section in which the
characteristic velocity, pressure and density are u0, p0 and ρ0 is
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where γ > 1 is the ratio of specific heats, d/dt = ∂/∂t + u∂/∂x and M0 = u0/a0, where
a2

0 = γp0/ρ0; the term involving M0 in (1.3) appears because the difference between
the pressure and p0 has been non-dimensionalized with ρ0u

2
0. This model only differs

from the inviscid model in the right-hand side of (1.2), which represents the effect
of friction at the pipe wall. However, while the characteristics are unaffected by the
presence of this term, it does render the flow non-isentropic and there are no Riemann
invariants.

The model can be validated from the mean turbulent flow equations for two-
dimensional flow in a thin channel with velocity vector (u, v) as derived in Cebeci &
Smith (1974):
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ū2

2

)
+

∂

∂x

(
ū
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where the barred quantities are time-averaged over the largest turbulent time scale.
The assumption that the flow is nearly unidirectional allows the stress, which com-
prises both viscous and Reynolds stresses, to be approximated by τ̄ and also allows
approximations such as ρu = ρ̄ū, whereas ρv �= ρ̄v̄.

Assuming the channel is of constant width l, we integrate equations (1.4)–(1.6) with

respect to y from −l/2 to l/2 using no-slip boundary conditions. Setting
∫ l/2

−l/2
ūdy = lu

etc., and τ̄ = ±τw at the channel walls ±l/2, we obtain the dimensional form of the
Fanno flow equations (1.1)–(1.3) under the assumption that the dimensional turbulent
shear stress at the wall is τw = − 1

2
ρu|u|f . This formula was discussed extensively in

the famous experimental work of Nikuradse (1950). There he elucidated how the
friction factor f at the wall of a pipe in which the flow is turbulent depends on
the wall roughness and the Reynolds number Re = Ul/ν, where U is the typical
velocity of fluid, ν is the kinematic viscosity. These studies were recently confirmed
theoretically by Gioia & Chakraborty (2006). They predict that, for large Re, the
friction factor is a function of roughness only and, for many commonly occurring
rough pipes, f ∼ O(10−3). However, we emphasize that all this experimental evidence
only underpins the Fanno model for steady flow and it is merely a reasonable
hypothesis for flows that are unsteady on a sufficiently long time scale.

The main aim of this paper is to present a reliable numerical procedure for solving
(1.1)–(1.3) in two situations where there is analytical evidence for at least some of the
features of the solution.

One class of problems to be addressed concerns flow in a semi-infinite pipe when
the end pressure is suddenly increased or decreased. For small pressure changes
relative to ambient, characterized by a dimensionless parameter ε � 1, these problems
are susceptible to asymptotic analysis, as described in Ockendon et al. (2001). The
following temporal sequence emerges:

(i) for dimensional times of O(l/a0f ) friction is negligible to lowest order;
(ii) for times of O(l/εa0f ), the velocity is governed by a nonlinear damped wave

equation of the form

∂2u

∂t2
− ∂2u

∂x2
= −2|u|∂u

∂t

in suitable variables;
(iii) for even larger times of O(l/ε2a0f ), the flow lags further and further behind

the leading characteristic propagating from the end of the pipe, and the velocity
satisfies the parabolic equation

∂2u

∂x2
= 2|u|∂u

∂t
,

again in suitable variables.
Another class of problems concerns piston motion in an infinitely long pipe, where

asymptotic results are again available when the piston velocity is of O(εa0), where
ε � 1. The sequence of events is the same as for the pressure impulse problem, with
the model becoming parabolic in nature over times of O(l/ε2a0f ). However, for times
of O(l/ε3a0f ) or longer, the pressure and density variations grow to be of the order
of their ambient values and the flow is then modelled by the degenerate hyperbolic
system
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+ γρu|u| = 0,
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∂t
+ γ
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Figure 1. Piston problem: travelling wave solutions for different Mach number flows
described in the text.

It was suggested in Ockendon et al. (2001) that a compressive piston motion eventually
sets up a travelling wave in which a slug of gas moves with the piston velocity, the
leading edge of this slug having a velocity γ times the piston velocity; ahead of this
slug, the gas is effectively at rest. For piston motions that expand the gas, a similar
confinement occurs in the vicinity of the initial piston position, where a dissipative
expansion wave describes the regime in which the flow is spatially varying.

These two situations will be analysed numerically in § 2 and § 3, in cases where ε is
of O(1) or smaller. One of our key results will be an assessment of another suggestion
made in Ockendon et al. (2001), namely that there exists a solution of (1.1)–(1.3)
which is a fully nonlinear wave of permanent form whose profile depends sensitively
on the Mach number Mw of the wave, defined as the ratio of the speed of the wave
to the ambient sound speed ahead of the wave:

(i) if Mw < 1, smooth compressive waves are possible with speed γ u0, where u0 is
the speed behind the wave (figure 1a);

(ii) if 1 <Mw <
√

2γ /(γ − 1), the only possible travelling waves contain a shock,
also moving with speed γ u0 (figure 1b);

(iii) if Mw >
√

2γ /(γ − 1), scenario (ii) applies except that the velocity increases as
the shock is approached from downstream (figure 1c).
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The only expansion wave of permanent form that was proposed in Ockendon et al.
(2001) described the flow behind a withdrawn piston moving with velocity precisely
γ u0, where u0 is the speed of the gas at x = −∞. The validity of this scenario for
travelling waves will be discussed in § 3.

Since all the problems we will study have both initial and boundary conditions, our
numerical procedure will use the characteristic-based method presented in Thompson
(1987, 1990). The key idea of this method is to identify outgoing and incoming waves
at the boundary and then satisfy the correct boundary conditions in terms of these
waves. Moreover, since all the problems have a moving boundary, we will transform
them into a Lagrangian frame (ξ, t) where the boundary is fixed, at ξ = 0.

To perform the characteristic analysis we need the primitive form of the hyperbolic
system we study, namely

∂u
∂t

+ A
∂u
∂ξ

= c, (1.7)

and which also may be written as

S
∂u
∂t

+ L = Sc, (1.8)

where the rows of S are the left eigenvectors l (i) corresponding to the eigenvalues λ(i)

of matrix A; the components L(i) of vector L are defined as

L(i) ≡ λ(i)l (i) ∂u
∂ξ

. (1.9)

The eigenvalues λ(i) are the slopes dξ/dt of the characteristics of the hyperbolic system
(1.7), and (1.8) are differential relations along the characteristics. Depending on the
direction of the characteristics at the boundary these relations represent incoming or
outgoing waves†. In particular, for problems posed in a semi-infinite region ξ � 0,
the incoming waves at ξ = 0 are those with λ(i) < 0 and they carry information from
earlier times. Thus, as long as the boundary is not a characteristic, the variables
associated with incoming waves can be found numerically using the definition of
L(i) in (1.9). The numerical approximation of (1.8) will be based on one-sided finite
difference approximations involving only interior and boundary points, ξ � 0.

We will also encounter Goursat problems, when the boundary coincides with one of
the characteristic paths, along which (1.8) becomes an ordinary differential equation
in time. In this case, the outgoing waves with λ(i) > 0 at ξ = 0 depend on data on the
boundary. For these waves L(i) have to be found from (1.8) using the given boundary
conditions at ξ = 0.

In any case, the problem of implementing boundary conditions is reduced to the
problem of computing the appropriate values for the L(i) terms in (1.8)–(1.9). Once all
the boundary values are computed, it is possible to use higher-order finite difference
approximations for (1.8) in the interior of the domain when ξ > 0 to improve the
global convergence.

† The words incoming and outgoing do not have universal interpretations in the literature. By
incoming we will mean a wave corresponding to a characteristic that impinges the boundary from
earlier times from within the field of flow.
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Figure 2. The characteristic structure for the compressive piston problem: —–, positive
characteristics; · · · , negative characteristics; - - - , particle path. (a) Fixed space coordinate,
(b) Lagrangian frame.

2. Piston problems
2.1. Compressive waves

We consider a piston moved impulsively with constant non-dimensional velocity u =1
into a quiescent gas occupying x � 0, so that initial conditions are

u = p = 0, ρ = 1 in x > 0, (2.1)

and u =1 at the piston x = t for all t > 0. Therefore we can also assume non-negative
velocity u throughout the flow.

The particle path dx/dt = u is one of the characteristics of the Fanno model
(1.1)–(1.3), and the one that starts at t =0, x =0 coincides with the piston path as
shown in figure 2(a). Thus, we have a well-posed Goursat problem. To transform the
moving-boundary value problem into a problem with fixed boundary we introduce a
Lagrangian coordinate

ξ =

∫ x

x(t)

ρ(s, t) ds, (2.2)

where x(t) is a particle path. Then equations (1.1)–(1.3) can be transformed into the
conservative Lagrangian form

∂

∂t

(
1

ρ

)
− ∂u

∂ξ
= 0, (2.3)

∂u

∂t
+

∂p

∂ξ
= −u2, (2.4)

∂e

∂t
+

∂

∂ξ

(
u

(
p +

1

(γ − 1)M2
0

))
= 0, (2.5)

where e = p/(γ − 1)ρ +u2/2; in primitive variables the energy equation (2.5) becomes

∂p

∂t
+ α2 ∂u

∂ξ
= (γ − 1)ρu3, (2.6)

where α2 = γpρ +ρ/M2
0 . It is not difficult to show by using the chain rule and product

rule the equivalence of the Euler and Lagrangian equations for classical solutions.
Also, Wagner (1987), using techniques from measure theory, has proved that there
is a one-to-one correspondence between bounded and measurable weak solutions of
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the Euler equations and weak solutions for the same problem written in Lagrangian
coordinates.

The initial conditions in the moving frame become

u = p = 0, ρ = 1 in ξ > 0 at t = 0, (2.7)

while, at the boundary ξ =0, we have u =1 for t > 0. The inverse transformation of
the Lagrangian coordinate is

x = x0(t) +

∫ ξ

0

1/ρ(s, t) ds, (2.8)

and x0(t) satisfies the equation

dx0

dt
= u(0, t).

In our case the piston path is known and therefore x0(t) = t .
For (2.3)–(2.4) and (2.6) the eigenvalues are

λ(1) = −α, λ(2) = 0, λ(3) = α, (2.9)

and the corresponding left eigenvectors are

l (1) = [0, −α, 1], l (2) = [α2, 0, 1], l (3) = [0, α, 1]. (2.10)

From (1.9) with u =[1/ρ, u, p]T we obtain

L(1) = λ(1)

(
−α

∂u

∂ξ
+

∂p

∂ξ

)
, L(2) = 0, L(3) = λ(3)

(
α

∂u

∂ξ
+

∂p

∂ξ

)
. (2.11)

After inverting these definitions and substituting for ∂u/∂ξ in terms of L in (2.3)–(2.4),
(2.6) we end up with the primitive equations (1.8), written as

∂

∂t

(
1

ρ

)
− 1

2α2

(
L(3) + L(1)

)
= 0,

∂u

∂t
+

1

2α
(L(3) − L(1)) = −u2,

∂p

∂t
+

1

2

(
L(3) + L(1)

)
= (γ − 1)ρu3.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12)

Since λ(1) is always negative, it corresponds to an incoming characteristic at the
boundary ξ = 0 as in figure 2(b). Therefore, the corresponding value of L(1) has to be
computed from its definition in (1.9) using the one-sided difference approximation

∂

∂ξ
u0,n =

1

	ξ
(u1,n − u0,n) + O(	ξ ) for n � 1, (2.13)

the computational domain being defined as (ξj , tn) ≡ (j	ξ, n	t), j ∈ [0, N ]. The
characteristic corresponding to λ(3) is outgoing from the boundary ξ = 0 and the value
of L(3) is specified from the boundary condition ∂u/∂t = 0 at ξ = 0. This condition is
satisfied if L(3) = L(1) − 2α, which, together with (2.12), gives the pressure and density
at the piston. To approximate the time derivative at the boundary we use the one-step
forward Euler method.

For the numerical solution of the interior problem (j, n � 1) we will solve the con-
servative Lagrangian system (2.3)–(2.5), thereby ensuring the approximate satisfaction
of the Rankine–Hugoniot conditions for any shock that appears. The eigenvalues of
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this system are again given by (2.9) but the left eigenvectors are now

l̃
(1)

= [p/(γ − 1), u + α/(γ − 1)ρ, −1],

l̃
(2)

= [p + 1/(γ − 1)M2
0 , −u, 1],

l̃
(3)

= [p/(γ − 1), u − α/(γ − 1)ρ, −1].

⎫⎪⎬
⎪⎭ (2.14)

After multiplying equations (2.3)–(2.5) by the matrix S̃ of left eigenvectors l̃
(i)

, the
relations along the characteristics are

S̃
∂u
∂t

+ S̃
∂

∂ξ
f (u) = S̃c, (2.15)

with

u = [1/ρ, u, e]T , f (u) =
[
−u, p, u

(
p + 1/(γ − 1)M2

0

)]T
, c = [0, −u2, 0]T .

Since λ(3) is always positive, we use a first-order upwind scheme to approximate the
spatial derivative in the corresponding component of equation (2.15). Similarly, we
use a one-step downwinding stencil in the equation along the negative characteristic
corresponding to λ(1). For the time discretization, the forward Euler method again
will be applied. Rewriting (2.15) in a discrete form, we then need to solve

l̃
(1)

j,nLuj,n = −l̃
(1)

j,nL+ f (uj,n) − u2
j,n

(
uj,n −

λ
(1)
j,n

(γ − 1)ρj,n

)
, (2.16)

l̃
(2)

j,nLuj,n = u3
j,n, (2.17)

l̃
(3)

j,nLuj,n = −l̃
(3)

j,nL− f (uj,n) − u2
j,n

(
uj,n −

λ
(3)
j,n

(γ − 1)ρj,n

)
, (2.18)

for j, n � 1; the time step 	t is chosen to satisfy the CFL condition that the characteri-
stic through a point must lie within the domain of dependence at that point, and the
finite difference operators are defined as

Lu =
uj,n+1 − uj,n

	t
, L+u =

uj+1,n − uj,n

	ξ
, L−u =

uj,n − uj−1,n

	ξ
.

The above discretization has been chosen because of its ability to predict large-time
solutions to Fanno problems. Unfortunately, this scheme is not fully conservative
and numerical dissipation may be expected when strong shocks occur. To check
this possibility, we have tested the code against exact solutions for piston problems
without the Fanno term. The results are shown in figure 3, which gives us confidence
that even when the piston Mach number is M0 = 1.4, the error in the shock position
at t = 100 is still less than 5 %.

All the numerical computations were performed on a grid of length 120, divided
into 1600 subintervals (N = 1600, 	ξ = 0.075). The ratio of specific heats γ was taken
to be 1.4 throughout. For the first test, in the light of the predictions in Ockendon
et al. (2001), the Mach number is small enough to satisfy Mw = γM0 < 1, so we
choose M0 = ε = 0.1. In this case we expect a smooth travelling wave solution to exist
when time becomes t � O(ε−2). Figure 4 shows the comparison of the numerical and
asymptotic solutions when t =O(ε−3); this situation was also indicated schematically
in figure 1(a).

In the hope of obtaining a travelling wave solution as in figure 1(b), we next choose
the Mach number M0 to be in the interval (1/γ,

√
2/γ (γ − 1)). The computed velocity
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Figure 3. Comparison of numerical (solid line) with exact (dot-dashed line) solution of
inviscid gas flow for compressive piston motion at times t = 20, 40, 60, 80, 100, and M0 = 1.4.
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Figure 4. Comparison of numerical (solid line) with asymptotic (dashed line) solution for
compressive piston motion when t = 3000 and M0 = ε = 0.1.

profiles at different time steps and the asymptotic solution are shown in figure 5(a, b)
when M0 = 1.4. We observe a shock, which was correctly captured by the numerical
scheme, moving at the predicted speed γ .

For even larger Mach numbers with M0 �
√

2/γ (γ − 1), travelling wave solutions
also exist, as in figure 1(c). The solutions for u at t = 20, 40, 60, 80, 100 and M0 = 3.5
are shown in figure 5(c, d). As expected, the velocity grows spatially until it reaches the
constant velocity us at the shock position x = γ t . Figure 5(d) shows the comparison
between the numerical and asymptotic solutions near the shock. The numerical
solution gives us = 1.1189 in comparison with the predicted value (2γ /γ + 1)(1 −
1/γ 2M2

0 ) = 1.1181 from Ockendon et al. (2001).
We also present the corresponding pressure profiles when M0 = 1.4 and M0 = 3.5

in figure 6 in order to emphasize the strong qualitative difference between inviscid
shocks and shocks in the Fanno model.
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Figure 5. Numerical (solid line) and asymptotic (dashed line) solutions for the compressive
piston problem when (a, b) M0 = 1.4 and (c, d) M0 = 3.5. Computed velocity profiles at times
t =20, 40, 60, 80, 100, and asymptotic velocity profile at t = 100. (b) Magnification of (a) in the
range x ∈ [100, 160]. (d) Magnification of (c) in the range x ∈ [100, 165].
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Figure 6. Computed pressure profiles (solid line) for the compressive piston problem at times
t =20, 40, 60, 80, 100 for different Mach numbers: (a) M0 = 1.4, (b) M0 = 3.5. The comparison
with asymptotic solutions (dashed line) corresponds to t =100.

2.2. Expansion waves

Now we suppose that gas initially occupies the region x < 0 but flows in the positive
x-direction behind a piston at x = t . In this case we again can assume that the
velocity of the gas u is non-negative throughout the flow. As in the compression case
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Figure 7. Velocity and pressure profiles of the expanding piston problem at times t =80, 160,
240, 320, 400 for different Mach number flows: (a) M0 = 0.1, (b) M0 = 1. Note, that both
velocity and pressure profiles become less steep as time increases.

we transform the problem into a Lagrangian frame in which the initial and boundary
conditions are

u = p = 0, ρ = 1 in ξ < 0 at t = 0, (2.19)

u = 1 in t > 0 at ξ = 0. (2.20)

After the withdrawal of the piston, expansion waves start propagating in the region
ξ < 0 and these are associated with the characteristics of negative slope. At the piston
ξ = 0, the positive characteristics represent incoming waves, so the characteristic-
based boundary conditions become different from those in compressive piston case.
In particular, the value of L(3) at ξ = 0 must be computed from its definition in (1.9)
using only the interior and boundary points of the computational domain defined as
(ξj , tn) ≡ (	ξ (j −N), n	t), j ∈ [0, N]. From (2.12) we see that the boundary condition
∂u/∂t =0 at ξ =0 is satisfied if L(1) = L(3) + 2α. Putting this back into (2.12), we can
determine 1/ρ and p at the piston. To approximate the time derivative, we again use
the forward Euler method and, to compute the interior problem when j, n � 1, the
numerical procedure is the same as for compressive motion.

The computed velocities and pressures are shown in figure 7 at different times and
for different Mach number flows. Note that none of these expansion waves appears
to tend to a travelling wave for large times and we will discuss the reason for this
in § 3.
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Figure 8. The characteristic structure for the compressive pressure-jump problem: —, positive
characteristics; · · · , negative characteristics; - - - , particle path. (a) Fixed space coordinate,
(b) Lagrangian frame.

3. Pressure-jump problems
3.1. Compressive waves

In this section, we consider gas flow in a semi-infinite tube x � 0 produced by a sudden
change in pressure at the end x =0, the gas being at rest with dimensional pressure p0

and density ρ0 at t = 0. Such problems are motivated by the application of (1.1)–(1.3)
to flows in pressure transducers and mine shafts (Mathematics in Industry Study
Group 2005), which can be modelled by prescribing a pressure jump precisely at the
end of the tube, x = 0. However, the resulting characteristic diagram in figure 8(a)
reveals that there are two outgoing characteristic families from the boundary x = 0;
they have slopes µ = dx/dt = u, u + c, where c =

√
γp/ρ is the speed of sound.

Therefore, we expect to prescribe two conditions on x = 0 rather than just pressure
to obtain well-posedeness. In practice, however, the end pressure will be controlled
by gas flowing into or out of the pipe from the region x < 0, so that it is realistic on
physical grounds to impose the pressure on the gas particle path corresponding to
dx/dt = u with x(0) = 0 rather than at the fixed boundary. In order to be fully realistic
we would have to introduce a contact discontinuity x = xc(t) defined as dxc/dt = u

with xc(0) = 0 and solve equations behind this discontinuity as well as ahead of it.
Taking pressure to be constant on this particle path is equivalent to assuming the
external flow comes from a large reservoir. We will discuss the implication of contact
discontinuities in the conclusion.

With prescribed pressure on the initial particle path, the problem becomes a Goursat
problem for which it is natural to introduce a material coordinate as in (2.2), leading
to the non-dimensional Lagrangian equations (2.3)–(2.5). The initial conditions are

u = p = 0, ρ = 1 when ξ > 0, t = 0. (3.1)

In order to write down the boundary condition, we must remember that the scalings
leading to (1.1)–(1.3) correspond to dimensional pressures p0 +ρ0u

2
0p = p0(1+γM2

0p).
Moreover, in order to maintain consistency with our use of M0 in § § 1 and 2, we
write the dimensional pressure applied to the end of the tube as p0(1 + γM0), which
determines M0 for this problem. Hence, even though larger dimensional applied
pressures lead to larger Mach numbers, our non-dimensional boundary condition is

p =
1

M0

at ξ = 0, t > 0. (3.2)
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Figure 9. Computed velocity and pressure profiles (solid line) for the compressive
pressure-jump problem at times t = 100, 200, 300, 500, 700 when M0 = 0.01; pressure is scaled
with 0.01. The comparison with asymptotic solutions (dashed line) corresponds to t = 700.

As in (2.13), the structure of characteristics at the boundary ξ =0 suggests the use of
a first-order downwind scheme to approximate spatial derivatives in the definition of
L(1) in (2.11), see figure 8(b). At the boundary ξ = 0, the condition is ∂p/∂t = 0, which
implies L(3) = −L(1) + 2(γ − 1)u3ρ. Having computed L(1) and L(3) in the primitive
equations (2.12) we can find u and ρ on ξ = 0 for all t > 0. To find the solution inside
the domain ξ, t > 0 we use the same method as for the piston problems in § 2.

Figure 9 compares the numerical and asymptotic solutions for M0 = 0.01 when time
has reached t =O(M−2

0 ). We see good agreement between the velocities and pressures
as expected for t � O(M−1

0 ). For Mach number of O(1) and larger the velocity and
pressure profiles at different time steps are plotted in figure 10. This figure contrasts
strongly with figure 6 because, in the pressure-jump problems, there is no mechanism
generating the high pressures associated with ‘Fanno shocks’.

3.2. Expansion waves

Now we consider the case when expansion waves occur due to a sudden pressure
drop at one end of the tube. The initial conditions are still (3.1) but, at the boundary
x = 0, we have a sudden decrease in pressure

p(0, t) =

{
0, t < 0

−1/M0, t > 0.
(3.3)

As in the corresponding piston problem, an expansion fan is again formed by the
positive outgoing characteristics from the discontinuity ξ = t = 0. Hence, the velocity
and density are completely determined at ξ =0 by the negative and zero-slope
characteristics for all times t > 0. Indeed, we can follow all the steps in the numerical
method described above for compressive motion, except that, since u < 0, the term
u|u| in the Fanno model should be replaced by −u2 throughout the computations.
Figure 11(a, b) shows the velocity and pressure solution profiles at different times and
for different values of Mach number M0.

As in § 2, we again note that none of the expansion waves appear to tend to a
travelling wave for large times. This is despite the theoretical possibility that such a
travelling wave exists when γM0 =

√
2γ /(γ − 1) in Ockendon et al. (2001).

In order to investigate this possibility we have used the expansion wave profile in
Ockendon et al. (2001) as the initial condition for a Fanno flow on −∞ <x < ∞ and
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Figure 10. Velocity and pressure profiles of the compressive pressure-jump problem at times
t = 100, 200, 300, 500, 700 for different Mach number flows: (a) M0 = 1, (b) M0 = 10.

unphysical oscillations appeared very rapidly for all the time steps we used. Hence,
we endorse the conjecture in Ockendon et al. (2001) that such expansion waves are
unstable.

4. Conclusions
This paper has shown how discretizations based on the method of characteristics

can be applied to the Fanno model of compressible pipe flow. We have emphasized
the use of the method over long time intervals, so that its predictions can be validated
against analytical results for weakly nonlinear flows. In particular, we have considered
compression and expansion waves driven by pistons and by step-function pressure
changes. Our results suggest that in all compressive flows into a quiescent region,
dispersed or partially dispersed shocks will emerge but that they will eventually decay
unless energy is continually supplied to the gas. Expansion into a quiescent region
is qualitatively different from the predictions of inviscid expansion waves and, even
though a travelling wave of expansion is theoretically possible for the Fanno model
in a special case, our computations have revealed it to be unstable. Further evidence
is provided by figure 12 which displays the velocity profile for the expansion wave
produced by a piston withdrawn at speed γ , corresponding to M0 =

√
2/(γ − 1)γ .

Comparison with figure 7 suggests that this value of M0 is in no way exceptional.
Our investigations have revealed one interesting open question, namely the evolution

of a contact discontinuity under the Fanno model. Preliminary results suggest that it
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Figure 11. Velocity and pressure profiles of the expansive pressure-jump problem at times
t = 200, 400, 500, 600, 700 for different Mach number flows: (a) M0 = 0.01, (b) M0 = 1. Note,
as time increases both velocity and pressure profiles get less steep.
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Figure 12. Computed velocity and pressure profiles of the expanding piston problem at
times t = 80, 160, 240, 320, 400 when M0 =

√
2/(γ − 1)γ =1.8898.

is the speed rather than the strength of contact discontinuities that is most affected
by the wall friction.
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